Bayesian Group Sparse Learning for Nonnegative Matrix Factorization
نویسندگان
چکیده
Nonnegative matrix factorization (NMF) is developed for parts-based representation of nonnegative data with the sparseness constraint. The degree of sparseness plays an important role for model regularization. This paper presents Bayesian group sparse learning for NMF and applies it for single-channel source separation. This method establishes the common bases and individual bases to characterize the shared information and residual noise in observed signals, respectively. Laplacian scale mixture distribution is introduced for sparse coding given a sparseness control parameter. A Markov chain Monte Carlo procedure is presented to infer two groups of parameters and their hyperparameters through a sampling procedure based on the conditional posterior distributions. Experiments on separating the single-channel audio signals into rhythmic and harmonic source signals show that the proposed method outperforms baseline NMF, Bayesian NMF and other group-based NMF in terms of signal-to-interference ratio.
منابع مشابه
Supervised Dictionary Learning by a Variational Bayesian Group Sparse Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) with group sparsity constraints is formulated as a probabilistic graphical model and, assuming some observed data have been generated by the model, a feasible variational Bayesian algorithm is derived for learning model parameters. When used in a supervised learning scenario, NMF is most often utilized as an unsupervised feature extractor followed by class...
متن کاملBayesian group sparse learning for music source separation
Nonnegative matrix factorization (NMF) is developed for parts-based representation of nonnegative signals with the sparseness constraint. The signals are adequately represented by a set of basis vectors and the corresponding weight parameters. NMF has been successfully applied for blind source separation and many other signal processing systems. Typically, controlling the degree of sparseness a...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملAutomatic Relevance Determination in Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has become a popular technique for data analysis and dimensionality reduction. However, it is often assumed that the number of latent dimensions (or components) is given. In practice, one must choose a suitable value depending on the data and/or setting. In this paper, we address this important issue by using a Bayesian approach to estimate the latent dime...
متن کامل